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- Deep learning for science @ NERSC
- Deep learning stack on Perlmutter
- How to use DL frameworks on Perlmutter: performance and optimization
- Additional tools & hands-on activity
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Deep Learning is powered by deep neural networks
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How to train your neural network

● Loss function: Compare model prediction 
to training dataset

● Gradient Descent: Dominant method to 
optimize network parameters to minimize 
the loss function θ* θ

Loss

● Backpropagation: Propagate updates 
to parameters through network using 
chain-rule of calculus
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Why is deep learning so successful?

1) Data: large curated datasets 2)  GPUs: linear algebra accelerators

3) Algorithmic advances: optimizers, regularization, normalization … etc.
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Deep Learning is transforming science

It can enhance various scientific workflows
● Analysis of large datasets
● Accelerating expensive simulations

Adoption is on the rise in the science communities
● Rapid growth in ML+science conferences
● Recognition of AI achievements: 

2018 Turing Award; 2018, 2020 Gordon Bell prizes
● HPC centers awarding allocations for AI, 

optimizing next-gen systems for AI
The DOE is investing heavily in AI for science
● Funding calls from ASCR (and other funding agencies), ECP ExaLearn
● Popular, enthusiastic AI4Science town hall series, 300 page report

https://www.anl.gov/ai-for-science-report
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         Extract                          Enhance                      Explore

Accelerating science with deep learning

Pathak et al. 2020  arXiv:2010.00072Hayat et al. 2021  arXiv:2012.13083 Chanussot et al. 2021  arXiv:2010.09990

https://arxiv.org/abs/2010.00072
https://arxiv.org/abs/2012.13083
https://arxiv.org/abs/2010.09990
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Scientific ML: endless possibilities!
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ML@NERSC survey and results
We track Machine Learning trends through our ML@NERSC 
survey on a 2-year cadence (2018, 2020, 2022)

• Targets scientific communities which (potentially) use HPC 
resources (NERSC and non-NERSC users)

• Tracks trends in types of types of problems, workload, 
model architectures, framework, scaling strategies, 
hardware and software needs, etc.

• Tracks current use cases of NERSC ML stack and attempts 
to identify areas for user experience and performance 
improvements

• Attempts to anticipate future workloads’ needs
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Training
● Iterative, interactive R&D
● Compute, network, and data intensive at large scale

Model selection / development, hyper-parameter optimization
● Massive compute resources
● Searching the model space for the best possible model
● Many parallel training applications

Inference
● Production analytics
● High-throughput
● Offline analytics
● Realtime processing

Deep Learning workloads

ML@NERSC 2020
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The need for scale in deep learning R&D

● Rapid prototyping/model evaluation (faster 
time to solution)

● Problem scale

● Volume of scientific datasets can be large

● Scientific datasets can be complex 
(multivariate, high dimensional)
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More complex tasks, bigger models, more compute

Models get bigger and more compute 
intensive as they tackle more complex 
tasks

ML@NERSC 2020

Credit: NVIDIA

https://developer.nvidia.com/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/
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Deep Learning parallelization strategies

Data Parallelism
Distribute input samples.

Model Parallelism
Distribute network 
structure (layers).

Layer Pipelining
Partition by layer.

Fig. credit: Ben-Nun and Hoefler arXiv:1802.09941

https://arxiv.org/abs/1802.09941
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Deep Learning parallelization strategies

Data parallelism is the most common strategy in 
practice, especially for inter-node scaling.

TensorFlow and PyTorch support data and 
intra-node pipeline parallelism natively. Horovod is 
the leading non-native distribution framework. All 
support MPI and/or NCCL backends.
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Data-parallel training considerations
Weak scaling: converge faster by taking fewer, bigger, faster steps

• i.e., more GPUs, larger batch sizes, larger learning rates

Caveat: for stability & convergence, requires tuning

• Warm-up+scale learning rate, adaptive optimizers, etc
• See our SC21 “Deep Learning at Scale” tutorial for more tips

Upper: 3 SGD steps w. learning-rate = η
Lower: 1 SGD step w. learning-rate = 3 * ηw0

w1

w2

w3

w’1

https://docs.google.com/presentation/d/1j_rxcLY6WzVqiDPm-LWnk-UISJiYtRwEHQZZWkZpktI/edit#slide=id.gf80317373c_0_92


Deep Learning on Perlmutter:
Software stack and best practices
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Deep Learning on Perlmutter
Our goal is to provide a functional, performant system for scientific DL 
workloads
● Hardware, software, tools, and methods
● For a highly diverse set of scientific domains and application types

How do we do that?
● by deploying optimized software in partnership with vendors
● by testing and evaluating system performance through benchmarking
● by helping users through consulting tickets
● documentation and training for best practices (like today)
● through our science engagements and own research projects
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Perlmutter: next-gen system for science, awesome for deep learning!

Cray Shasta system with 3-4x capability of Cori
Phase 1: 12 GPU cabinets with 4x NVIDIA Ampere 
GPU nodes. Total >6000 GPUs! 
35 PB of All-Flash storage
Phase 2 (mid-2021): 12 AMD CPU-only cabinets
Cray Slingshot high performance network

https://blogs.nvidia.com/blog/2021/05/27/nersc-perlmutter-ai-supercomputer/

https://devblogs.nvidia.com/nvidia-ampere-architecture-in-depth/
https://blogs.nvidia.com/blog/2021/05/27/nersc-perlmutter-ai-supercomputer/
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Perlmutter deep learning software stack overview
General strategy:

● Provide functional, performant installations of the most 
popular frameworks and libraries

● Enable flexibility for users to customize and deploy their 
own solutions

Frameworks:

Distributed training libraries:
● Horovod
● PyTorch distributed

Productive tools and services:
● Jupyter, Shifter

https://docs.nersc.gov/machinelearning/ 

https://docs.nersc.gov/machinelearning/
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Frameworks trends

Repositories on 
PapersWithCode: 
(research works with 
published code)

Google Search trends:

https://paperswithcode.com/trends

https://paperswithcode.com/trends
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How to use the Perlmutter DL software stack

We have modules you can load which contain python and DL libraries:
module load tensorflow/2.6.0

module load pytorch/1.10.0

Check which software versions are available with:
module avail pytorch

You can install your own packages on top to customize:
pip install --user MY-PACKAGE 

Or, clone a conda environment from our modules:
conda create -n my-env --clone /path/to/module/installation

Or, create custom conda environments from scratch:
conda create -n my-env MY-PACKAGES

More on how to customize your setup can be found in the docs (TensorFlow, PyTorch).

https://docs.nersc.gov/analytics/machinelearning/tensorflow/#customizing-environments
https://docs.nersc.gov/analytics/machinelearning/pytorch/#customizing-environments
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Containerized DL: using Shifter on Perlmutter

NERSC currently supports containers with Perlmutter via Shifter

• Easy, performant: Top500 HPL number was from a container!

To see images currently available: 
shifterimg images | grep pytorch

To pull desired docker images onto Perlmutter:
shifterimg pull <dockerhub_image_tag>

To use interactively:

shifter --module gpu --image=nvcr.io/nvidia/pytorch:21.08-py3

Use Slurm image shifter options for best performance in batch jobs:

#SBATCH --image=nersc/pytorch:1.5.0_v0
srun shifter python my_python_script.py

https://docs.nersc.gov/development/shifter/gpus/
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Best Practices for DL + Shifter on Perlmutter

NVIDIA provides containers optimized for deep learning on GPUs with

• Pytorch or TensorFlow+Horovod
• Optimized drivers, CUDA, NCCL, cuDNN, etc
• Many different versions available

We also provide images based on NVIDIA's, which have a few useful extras

You can also build your own custom containers (easy to build on top of NVIDIA’s)

Notes
● Customization: from inside the container, do pip install --user MY-PACKAGE 

(make sure to set $PYTHONUSERBASE to a custom path for the desired container)

● NVIDIA NGC containers use OpenMPI, which requires specific options if you require MPI.
Instructions: https://docs.nersc.gov/development/shifter/gpus/#shifter-mpich-module

https://docs.nvidia.com/deeplearning/frameworks/
https://github.com/NERSC/nersc-ml-images
https://docs.nersc.gov/machinelearning/tensorflow/#containers
https://docs.nersc.gov/development/shifter/gpus/#shifter-mpich-module
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General guidelines for deep learning at NERSC
NERSC documentation: https://docs.nersc.gov/machinelearning/ 

Use our provided modules/containers if appropriate
● They have the recommended builds and libraries tested for functionality and performance
● We can track usage which informs our software support strategy

For developing and testing your ML workflows
● Use interactive QOS or Jupyter for on-demand compute resources
● Visualize your models and results with TensorBoard or Weights & Biases

For performance tuning
● Next section of these slides

On Perlmutter, refer to these pages for known issues:
● https://docs.nersc.gov/current/
● https://docs.nersc.gov/machinelearning/known_issues/ 

If you need additional help, open a ticket: https://help.nersc.gov/ 

https://docs.nersc.gov/machinelearning/
https://docs.nersc.gov/current/
https://docs.nersc.gov/machinelearning/known_issues/
https://help.nersc.gov/
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TensorFlow at NERSC docs: 
https://docs.nersc.gov/machinelearning/tensorflow/

For distributed training, we recommend using Horovod
● Easy to use and launch with SLURM
● Can use MPI and NCCL as appropriate
● Horovod examples: 

https://github.com/horovod/horovod/tree/master/examples 

TensorFlow has some nice built-in profiling capabilities
● TF profiler in TF 2: https://www.tensorflow.org/guide/profiler 
● Keras TensorBoardCallback in TF 1

Guidelines - TensorFlow distributed training

https://docs.nersc.gov/machinelearning/tensorflow/
https://github.com/horovod/horovod/tree/master/examples
https://www.tensorflow.org/guide/profiler
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Guidelines - PyTorch distributed training
PyTorch at NERSC docs: 
https://docs.nersc.gov/machinelearning/pytorch/ 

For distributed training, use PyTorch’s DistributedDataParallel 
● Simple model wrapper, native to Pytorch
● Works on CPU and GPU
● Highly optimized for distributed GPU training
● Docs: https://pytorch.org/tutorials/beginner/dist_overview.html 

Distributed backends
● On Perlmutter, use the NCCL backend for optimized GPU 

communication

https://docs.nersc.gov/machinelearning/pytorch/
https://pytorch.org/tutorials/beginner/dist_overview.html


Deep Learning on Perlmutter:
Performance & benchmarking
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Deep Learning Performance on Perlmutter
Good performance for DL workloads on Perlmutter is essential
● for fast iteration in R&D for individual scientists
● for production workloads with computational constraints (e.g. realtime)
● to optimize overall system throughput for all NERSC users

This is true regardless of your type of workload
● Single GPU vs. 1000s of GPUs
● Jupyter notebooks or batch scripts

Ideally, the DL frameworks/tools would give both maximal flexibility, ease of use, 
and performance out-of-the-box
● Not always the case; there can be performance limitations/pitfalls
● It is always useful to spend a little time evaluating the performance of your 

workload; you could have a lot to gain
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How do we evaluate system performance?
Running various tests and benchmarks
● NCCL tests
● Torchvision benchmarks

MLPerf HPC - DL benchmarking for 
HPC science from MLCommons
● Measures time-to-train models as well 

as system throughput (models/min)
● The v1.0 submission round had 3 scientific applications:

○ DeepCAM - climate segmentation
○ CosmoFlow - 3D CNN regression
○ OpenCatalyst - GNN predicting energy+forces in atomic system

● We submitted highly competitive results for v1.0 with Perlmutter Phase 1
○ Leading time-to-train result for OpenCatalyst, sub-leading results for 

CosmoFlow+DeepCAM
○ Largest scale GPU throughput measurement (5120 GPUs)
○ See the full results here: https://mlcommons.org/en/training-hpc-10/ 

https://mlcommons.org/en/training-hpc-10/
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What can cause performance problems for DL?
At the single GPU level
● Spending too much time in (single-threaded) Python code

○ Keep as much of the work as possible on the GPU and/or in numerical libraries.
● Poorly-performing input data pipelines

○ probably the most common source of DL performance problems
○ relatively straightforward to diagnose (e.g. low GPU utilization), sometimes easy to fix

● Unoptimized GPU kernels

At the multi-GPU and multi-node levels
● Network communication bottlenecks

○ Poorly configured communication libraries - can be easy to fix
○ Poorly optimized communication patterns - may be able to tweak library settings

● Load imbalance for irregular-sized scientific data samples
● Parallel file system

○ DL random read patterns are not very friendly to large parallel filesystems like Lustre
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How can you diagnose performance problems?
Start simple, e.g. check GPU utilization
● Use nvidia-smi, gpustat, or another monitoring tool like Weights & Biases

● If utilization is low, you’re not making good use of the GPU. Investigate deeper to 
figure out why

# Run nvidia-smi in the background, log to CSV
nvidia-smi -l 1 \
    --query-gpu=timestamp,name,index,utilization.gpu,memory.used \
    --format=csv > nvsmi.csv &
NVSMI_PID=$!

# Run your training
srun python train.py ...

# Terminate nvidia-smi
kill $NVSMI_PID

Example using nvidia-smi in your sbatch script
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Use a profiler to gain deeper insights
● Nsight-systems is a highly standard NVIDIA tool which can collect and visualize 

the execution timeline to enable insights
○ E.g., you can see visually how the GPU is waiting for data from CPU
○ Understanding the timeline can take a little bit of practice, though

● Nsight-compute is a powerful tool for collecting kernel-level information about your 
application

○ E.g., if you want to look at performance of individual kernels, make roofline 
plots, etc.

○ Challenging to use unless you’re a performance expert
● DL-framework-specific tools are getting better all the time, and try to provide 

high-level recommendations:
○ TensorFlow profiler, PyTorch profiler, NVIDIA’s DLProf

How can you diagnose performance problems?
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Nsight Systems example
Nsight Systems can let you see what your application is doing in a nice 
interactive timeline view, which can help elucidate performance issues

e.g., gaps in cuda
execution due to
data loading

Refer to our full SC21 Deep Learning at Scale tutorial for a very nice real-world 
walkthrough: https://github.com/NERSC/sc21-dl-tutorial#profiling-with-nsight-systems

https://github.com/NERSC/sc21-dl-tutorial#profiling-with-nsight-systems
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TensorFlow and PyTorch profilers
The framework profilers try to give you 
nice, actionable, summary information 
about performance

You can view the results 
in TensorBoard

https://pytorch.org/blog/introducing-pytorch-profiler-the-new-and-improved-performance-tool/ 

https://www.tensorflow.org/guide/profiler 

https://pytorch.org/blog/introducing-pytorch-profiler-the-new-and-improved-performance-tool/
https://www.tensorflow.org/guide/profiler
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Tips for improving performance
Tune your data loading pipeline
● Adjust num_workers, use pin_memory (PyTorch)
● If I/O (from lustre) is a bottleneck, consider staging data onto nodes

○ Use per-process memory, or /tmp (126 GB shared by all workers on node)
○ Larger datasets may require partitioning across nodes to fit

● Consider NVIDIA DALI library for GPU-accelerated data transformations/augmentations, 
parallel host-to-device streams

Tune single-GPU performance
● Try mixed-precision training
● Try JIT compiling your model
● For PyTorch, try Apex fused optimizers

Tune distributed performance
● For a fixed global batch size, scaling to more GPUs trades off efficiency for runtime - tune for 

your needs
● Tune communication backend settings (e.g. pytorch bucket size)

Refer to our full SC21 tutorial for more: https://github.com/NERSC/sc21-dl-tutorial 

https://github.com/NERSC/sc21-dl-tutorial


Deep Learning on Perlmutter:
Workflow tools
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Jupyter for deep learning
JupyterHub service provides a rich,
interactive notebook ecosystem on Cori
● Very popular service with hundreds of users
● A favorite way for users to develop ML code

Users can run their deep learning workloads
● on dedicated Perlmutter GPU nodes
● using our pre-installed DL software kernels
● using their own custom kernels

https://docs.nersc.gov/services/jupyter/#conda-environments-as-kernels
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TensorBoard at NERSC
TensorBoard is the most popular tool for visualizing 
and monitoring DL experiments, widely adopted by 
TensorFlow and PyTorch communities.
We recommend running TensorBoard in Jupyter 
using nersc-tensorboard helper module.

import nersc_tensorboard_helper

%load_ext tensorboard

%tensorboard --logdir YOURLOGDIR --port 0

then get an address to your TensorBoard GUI:
nersc_tensorboard_helper.tb_address()

https://docs.nersc.gov/analytics/machinelearning/tensorboard/
https://github.com/NERSC/nersc-tensorboard-helper
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Hyper-parameter optimization (HPO) solutions
Model selection/tuning are critical for getting the most out of deep learning
● Many methods and libraries exist for tuning your model hyper-parameters
● Usually very computationally expensive because you need to train many models 

=> Good for large HPC resources

Users can use whatever tools work best for them
● Ask us for help if needed!
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HPO Example: Ray Tune

Tune is an open-source Python library for experiment 
execution and hyperparameter tuning at any scale.
● Supports any ML framework
● Implements state of the art HPO strategies
● Natively integrates with optimization libraries 

(HyperOpt, BayesianOpt, and Facebook Ax)
● Integrates well with Slurm
● Handles trials micro scheduling on 

multi-gpu-node resources (no GPU binding 
boilerplate needed)

Example of Multi-node HPO using RayTune 
used by NESAP team to optimize Graph 
Neural Network models for catalysis 
applications (Brandon Wood et al.)

https://docs.ray.io/en/master/tune.html


Outreach & additional resources
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Training events
The Deep Learning for Science School at Berkeley Lab (https://dl4sci-school.lbl.gov/) 
● Comprehensive program with lectures, demos, hands-on sessions, posters
● You can view the full 2019 material (videos, slides, code) online: 

https://sites.google.com/lbl.gov/dl4sci2019
● 2020 webinar series – recorded talks:

https://dl4sci-school.lbl.gov/agenda
The Deep Learning at Scale Tutorial
● Jointly organized with NVIDIA (& Cray in previous years)
● Presented at SC18-21, ECP Annual 2019, ISC19
● Detailed lectures + hands-on material:

○ Distributed training, profiling & optimization on Perlmutter
○ Basis for today’s hands-on exercises

● See the full SC21 material here

NERSC Data Seminar Series:
https://github.com/NERSC/data-seminars 

https://dl4sci-school.lbl.gov/
https://sites.google.com/lbl.gov/dl4sci2019
https://dl4sci-school.lbl.gov/agenda
https://github.com/NERSC/sc21-dl-tutorial
https://github.com/NERSC/data-seminars
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Conclusions
Deep learning for science is here and growing
● Powerful capabilities
● Enthusiastic community
● Increasing HPC workloads

Perlmutter has a productive, performant software stack for deep learning
● Optimized frameworks and solutions for small to large scale DL workloads
● Support for productive workflows (Jupyter, HPO)

Join the NERSC Users Slack

Time for questions, then setup for hands-on!

https://www.nersc.gov/users/NUG/nersc-users-slack/
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Thank you



Hands-on exercises: background
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Deep learning science example:

“N-body to Hydro” model for cosmology

Adapted from “Fast, high-fidelity Lyman-α forests with convolutional neural networks”, 
https://arxiv.org/abs/2106.12662 

https://arxiv.org/abs/2106.12662
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Science problem: cosmological simulations

Dark matter is abundant, and essential to structure formation, but can’t see it!

Need to model “observables” from visible matter, e.g. luminous gas + galaxies

Large-scale-structure forms mostly 
via dark matter:

Gas dynamics affected by small-scale 
hydrodynamic interactions:

https://docs.google.com/file/d/1HcOkc-eQCNCAjIfZRLdTYuaSOT6TZnG7/preview
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Modeling full system computationally demanding
● Multiphysics fluids solver on HPC systems

Simpler: N-body simulations (dark matter only)
● Quick to run, ignore hydrodynamics
● Still capture large-scale structure

Long-standing goal:

Reconstruct hydrodynamic fields from N-body

Hydrodynamic reconstruction from N-body simulations

N-body

Hydro

Observables
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U-Net architecture:

● Convolution layers (down/up-sampling)
● Skip connections across scales

Hydrodynamic reconstruction from N-body simulations

U-Net

N-body

Hydro
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Dataset: N-body + Hydro simulations

Volume of data in simulations presents a challenge:

● 4 input fields, 5 output fields (densities, temperatures, velocities)
● Spatial grid is very large (10243 - 20483)

○ Train with smaller crops, or sub-volumes
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Dataset: N-body + Hydro simulations

Locality & symmetries as data 
augmentations:

● For training, randomly crop 
sub-volumes and apply rotations and 
reflections

U-Net

loss
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Today’s code
We will be using PyTorch today
● Pythonic, easy to integrate with other python code
● Good performance and distributed training with support for MPI and NCCL

The example code we’ll be using is in the github repository:
https://github.com/NERSC/ml-pm-training-2022
Readme has detailed instructions!

Access to Perlmutter is via NERSC JupyterHub:
https://jupyter.nersc.gov

https://github.com/NERSC/ml-pm-training-2022
https://jupyter.nersc.gov

